The Use of Special Graphs for Obtaining Lower Bounds in the Geometric Quadratic Assignment Problem
نویسنده
چکیده
In this paper we define a class of edge-weighted graphs having nonnegatively valued bisections. We show experimentally that complete such graphs with more than three vertices and also some special graphs with only positive edges can be applied to improve the existing lower bounds for a version of the quadratic assignment problem, namely with a matrix composed of rectilinear distances between points in the Euclidean space.
منابع مشابه
Robust Quadratic Assignment Problem with Uncertain Locations
We consider a generalization of the classical quadratic assignment problem, where coordinates of locations are uncertain and only upper and lower bounds are known for each coordinate. We develop a mixed integer linear programming model as a robust counterpart of the proposed uncertain model. A key challenge is that, since the uncertain model involves nonlinear objective function of the ...
متن کاملAssignment Problems
Page 55 line 6: replace " among the matched " with " among the unmatched " ; 229 line 13: replace " Palubeckis [544] " with the following (missing) reference: G. Palubeckis. The use of special graphs for obtaining lower bounds in the geometric quadratic assignment problem. 289 eqn (9.27): replace " s ∈ F " with " S ∈ F " ; 308 line 14: replace " approximation algorithms which yield a feasible s...
متن کاملOn Third Geometric-Arithmetic Index of Graphs
Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.
متن کاملOn Second Geometric-Arithmetic Index of Graphs
The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کامل